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ON THE STABILITY OF VORTEX MOTIONS
IN THE PRESENCE OF MAGNETIC FIELDS

INTRODUCTION

-

In an important paper on the hydrodynamic and hydromagnetic stability of nondissipative swirling
flows, Howard & Gupta (1962) presented many interesting aspects on stability characteristics of vortex
motion with and without axial velocity. Even though they restricted themselves mostly to homogene-
ous fluids subject to axisymmetric perturbations, their generalization of the Richardson criterion and of
the semi-circle theorem to axisymmetric steady flows presented a relatively simple insight into the type
of parallel flows complicated by the cylindrical geometry. Acheson (1972, 1973) later extended the ana-
lyses into the same type of flows subject to non-axisymmetric perturbations. A review paper on this

subject was given by Acheson & Hide (1973).

By considering a homogeneous fluid rotating uniformly in a radius-dependent magnetic field,
Acheson (1972) derived some sufficient conditions for stability of the flow. The difference between the
axisymmetric and nonaxisymmetric modes were brought out by assuming the wavelengths in the radial
direction to be small compared with the radius. In addition, the stability phenomenon that all non-
axisymmetric unstable waves must propagate against the basic rotation, i.e., the westward drift, was
proved to prevail with a restriction on the axial and azimuthal components of the magnetic field. With
the help of the Boussinesq approximation, the author later (Acheson 1973) generalized the westward
drift phenomenon to heterogeneous fluids rotating differentially. Also based on this westward drift, a
quadrant theorem reminiscent of the semi-circle theorem encountered in two-dimensional stratified

flows was derived for slow amplifying waves.

It should be emphasized, as also noted explicitly by Acheson (1973), that the results obtained in

his paper are restricted to perturbations with non-zero axial wave numbers. Any attempt to infer that

Manuscript approved October 12, 1982.
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the results can be applied to perturbations with zero axial wave numbers (azimuthal modes) may lead

to incorrect conclusions on both the hydrodynamic and hydromagnetic problems. This argumeat will

be demonstrated by examining the azimuthal modes in this paper.

In the present investigation, stability analyses are performed on a general type of vortex flow with ‘

varying density in the presence of an axial and an azimuthal magnetic field. A sufficiency condition for
stability is derived and compared with the results obtained from other methods. The dual role played
by the rotating velocity on the stability of vortex motions is separated and revealed by proper transfor-
mations. While the shear effect conveyed by the velocity gradient at the shear layer always destabilizes
the flow, the centrifugal force generated by the fluid rotation stabilizes or destabilizes the flow depend-

ing on whether or not the density increases radially outwards.

For vortex motions subject to azimuthal disturbances, a magnetic field always has a stabilizing
effect regardless of its detailed distribution. As an extension of the semi-ellipse theorem in stratified
rotating flows (Fung 1982), an upper bound on azimuthal amplifying waves is derived with a restriction.
The restriction suggests that the semi-circle in the complex velocity plane does not provide a bound on
all the growing azimuthal modes. Furthermore, the upper bound demonstrates that unstable waves do
not necessarily drift westward for the hydromagnetic or non-hydromagnetic case. For uniformly rotat-
ing flows with constant angular AlfVen velocities, all azimuthal unstable waves must lie on a semi-circle
independent of the density distributions. Exact solutions for some special flow profiles are obtained to

support the derived stability criteria.
MATHEMATICAL DERIVATION

Consider a vortex flow with a velocity U and a magnetic field A to be confined within the annular
region (r, 8, z) between two rigid, infinite and coaxial cylinders. The fluid having an inhomogeneous
density p* is assumed to be inviscid, incompressible, and non-heat-conducting. When gravitational
forces and dissipation effects due to viscosity, magnetic resistivity, and thermal diffusivity are neglected,

the governing equations for the flow are
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V- -H=0 " (4)
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where u denotes the magnetic permeability. The total pressure Q (including the magnetic pressure) is

related to the hydrodynamic pressure P as follows:

- -+ -“'— 7, 2‘
Q=P+ |H| (3]
The boundary conditions for the system governed by Eqs. (1) to (5) are those of perfectly conducting

rigid walls.

The flow to be considered has a steady-state, radius-dependent profile as follows: Q(r) is the
angular velocity, W(r) the axial velocity, Hy(r) the azimuthal magnetic field, H,(r) the axial magnetic
field, Qo(r) the total pressure, and po(r) the density. Let the flow be perturbed as follows:

U=Ula rQ@) +v, W)+ wl,
H o= B lh, Ho(r) + hg, H.(r) + k.,

p* = polr) +p. _ ™
We further introduce the periodic solutions

é=¢(r) Exp lilkz + mo - w?)] (8)
such that the azimuthal wave number m is an integer, the axial wave number £ is real and positive, and
the circular frequency w = w, + jw, is complex. Within the framework of the normal mode method,

the linearized equations for the flow described by Eqs. (1) to (5), subject to small perturbations, are

given as follows:

po [iNu = 2Qv] - -4&”- (iN,h, - it—lf- hyl = rQ% = -Dq )
po [INV + D*(rQ)ul - % [iN,he + D*(HP)h,] = ~i -':'- q 10)
po [iNw + (DW) u) - {; {iN,h, + (DH,)h,) = ~ikgq an
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D% + i

‘-VH«i-O (12) E

Nh, = N,u =0 a3

r iNhy = D- (r0) b, = [N,y = D. (Hyul = —Hy |D%u + 1 | v + k.] (14) ;
{ iNh, = (DW) h, ~ [iN,w — (DH,) u] = -H, [D’u +i L:'-v + ks] (15)
i
; D, + i |2 by + k| = 0 (16)
p iNp + (Dpg) u=0 an
- H,
i where N = kW + mQ — w is the Doppler-shifted frequency, N, = kH, + m —, D = — D*=D
E
' : + l’ and D. = D - l’ The characteristic that Eqs. (3) and (4) represent only three independent par-
: »
: tial differential equations, under the present assumption, is reflected in Eqs. (13) to (16). P
i; 1
: If we define the angular and axial Alfvén velocities as
¥
/ —, W, = /—L‘-— H, 3
4mwp, A= dwpy ° : g
and the Alfvén frequency as '
1
. NA-kWA+mnAr
, Eqs. (9) to (17) can be combined into two independent differential equations as follows:
!
o 2
1 ! 2 m .
K+ 2
! . 2m0 N Q) i r 4
? N} [ . . l ), M} o, o, NI [ -
] '-.
i N} 2mQ Q4 N, i
- "1 | Do+ S 1 - ot & 0 (19) )
; where the Rayleigh-Synge discriminant and the Alfvén discriminant are respectively defined as
# .
' . D [po(rzn)zl
‘" O B Eretm—
{ por’
A ' ’
t ?‘ - ~— D [poﬂﬂ.
Po
4
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The equation governing stability of the flow can be obtained by combining Eqs. (18) and (19) as fol-

lows:
2 2 2mpoE
D [poE(N - NA)D.ll‘] - D- —r—(Nﬂ - NAQ,‘)
2 a2 2 (NQ = N0 ,)?
+po| N2 =N} -+ V¥, +402 - 4K*E > - =0 (20)
N - NA
where
u
Y- N @n
and
2
) R aq—
m? + kr?
The boundary conditions for the above equation are
!ll(ﬂ) - $(fz) =0 (22)

where 7, and r; are locations of the solid boundaries. If discontinuities in the flow profile exist within
the flow domain, the matching conditions obtained by integrating Eqgs. (18) and (19) across the discon-

tinuity surface are

u
< N) 0 (23)
<q> —ll% <por(Q?-Q3>=0 (24)
where <¢> = dr.0) — d(r-0) represents the jump condition across the discontinuity surface at
r= R
STABILITY CRITERIA

We will investigate the general stability characteristics described by Eq. (20). Due to the com-
plexity of the presence of all the four components in the velocity and magnetic fields, general stability

criteria only in terms of the flow profiles are difficult to derive. However, stability conditions for some

particular cases can still be observed and discussed in the following.

o rma A




(1) Suflicient Condition for Stability

Let
' _ ¥ =NV ' (25)
o Equation (20) is then transformed to
! N}
L B P e R |
; 1 poE(DN)? N} ZmpoEDN
. ;
' Po (NQ - N,Q )2 !
-—N—[N’—N}—¢+\m+4nz-4k2£ N =N -0 (26) :

Muitiplying the above equation by ré, where the quantity with a bar stands for the compiex conjugate,

and integrating the resuitant equation over the flow domain, we obtain

N
) p.,[N - T] (E|D*¢|* + 161 rdr
- pof | DN |, _ NP
]2 N?

1 poE(DN)? N}| , 2mpoEDN
+f l4 A N?

+ -27'" (NQ - N,n,)l D¢V dr

(NQ - N,Q,)

- %j— [cb—\p,, - 4Q% + 4kE (an N‘ ]} ¢ [2rdr = 0 2n

, ,‘ | with its imaginary part equal to

‘ ®; fpo(E|D¢¢|2 + |o[®) rar +f INP lN‘D'M

r r INI?

! (0 +0,.)2 (ﬂ 04) 2 H
+f2kzp°5[lN+N,P + IN=N.F e 12rdr

. [g,___ 2mQ, GW+ml-o, )N,.DNIM]

' +f—lf7°l_" N}-m»-\Ir,,--a(nh-('s,%)—-2-4rM

o _ EWN)?

2 ($l2rd =0 (28)

L+ TP lNP]




- Since the first three integrals are all positive definite, no solution corresponding to w, # 0 exists if the
¢ : sum of the quantities in the last integral in Eq. «28) is positive. Therefore we can conclude that the
flow is stable if

P-V,-402+ QD) + kW, + mQ ,)?
_ RUDW + mDQ) lzmn KDW + mDQ [1 , W+ m0,)

r 4

anywhere within the flow domain. Equation (29) can be rearranged to

+
m? + kr? (kW + mQ - wl?

]>o 29) |

3 1+ s)Hd~v,-402 + N3} - 4Q?
. : e - ¥, — 405 + Ni >1 (30)

NPT 4
A

[DW + s(rDQ + 4Q)] +

where s = m/kr. It can be seen immediately that Eq. (30) will be violated when

®—V¥,-402 + N} €40Y01 + 5. G
Equation (30) is reminiscent of the stability criterion obtained by Fung & Kurzweg (1975) in their
study on the stability of swirling flows with radius-dependent density. Like the role played by the
Rayleigh-Synge criterion (a condition for centrifugal stability) in their stability criterion, Eq. (31) can be
viewed as a precondition to the sufficiency criterion in Eq. (30). However, this sufficiency criterion for
zero magnetic forces does not reduce to the one obtained by Fung & Kurzweg (1975). This is a well-
known paradox stemming from the fact that the lines of magnetic flux for a fluid with zero resistivity
are permanently attached to the fluid (Chandrasekhar 1961). The attachment is contained in the
second and the third integral of Eq. (28). If we assume

Ny= kW, +mQ,=0 (32)
throughout the flow domain, Eq. (28) can be written as

w; lfpo(lz'lD"qtl2 + |1 rdr R

2
+f|7‘;°|—z L+l+®-%,-402+03) - zm“rﬂ’”— E(am ll¢l’m'-o. 33)

The positive definite integrands

e,

| am’Q}
27 w28

(34)




4k%r?
m? + k2
which were originally not admitted in the sufficiency condition obtained from the second and third

L= @2+ Q2) (35)

integral in Eq. (28), are now recovered. The resultant condition for stability now reads

- - 1+s)(®-w,) 1 ) 3 {
S Z —. 36 P
- [DW + s(rDQ + 40Q))? 4 (36)

Note that Eq. (36) is valid only with the constraint described by Eq. (32). It is remarkable that even ; i

i
though the constraint involves the magnetic forces in both the axial and azimuthal direction, the . ]

sufficiency condition described in Eq. (36) does not depend on the axial magnetic forces. Furthermore,
if we compare the numerator in Eq. (30) with that in Eq. (36), a destabilizing term
-4[Q2 + (1 + s9)Q }] appearing in the former disappears in the latter as N, approaches zero. Though
this paradox suggests a destabilization of the flow by the magnetic forces, one should keep in mind that
both the sufficiency conditions in Egs. (30) and (36) only represent a bound on stability and are by no

means to give the final siability conditions. ‘,

Since the sufficiency condition for stability obtained in Eq. (29) or (30) contains the unknown fre- i
quency w, a more general view of flow characteristics in terms of given flow profiles is therefore
difficult to see. In the following we will further examine the flow characteristics using other methods

and compare the results with the derived sufficiency conditions for some particular cases.

' (2) Comparisons with Different Modes

Three different types of perturbations are to be examined and compared with the earlier obtained

sufficiency condition. !

A. Axisymmetric modes (m = 0)

For simplicity, we will neglect the axial magnetic flux, i.e., W, = 0 throughout the flow domain.

Equation (20) under the present conditions reads

D lpo(W = ¢)2D*] = po [k3(W ~ )} =@ + ¥, Ju =0 @an

_—
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where

C = % - Crr + ick‘
is the axial phase velocity. The constraint in Eq. (32) is now satisfied and the loss of the stabilizing
effect by the presence of the axial magnetic flux is recovered. The sufficient condition for stability

reduced from Eq. (36) becomes

i
where
¢ - ‘yA
Jy = (DW)? 39)

which is reminiscent of the Richardson number in two-dimensional stratified flows. Condition (38) was

first derived by Howard & Gupta (1962) for homogeneous fluids. In the absence of axial flows, Eq.
(37) together with the boundary conditions forms a Sturm Liouville system for which

is a necessary and sufficient condition for stability. The above condition was first derived by Michaei
(1954) for homogeneous fluids and will be called the generalized Michael condition. An aiternative

way to examine the influence of flow quantities on stability can be obtained as follows.

Multiplying Eq. (37) by r¢ and integrating the resulting equation throughout the flow domain, we
obtain

S (W= Xpdr ~ [ po(® = W,) y2rdr = 0 “1)

where

X, = po (1D*¢}2 + k}glDr > 0.
Solving Eq. (38) for ¢, results in

- 2 -
o m J wXear = \/kad:{[po @ - ¥,) §[2rdr - 8, @

Xkdr

where

8 = [ Xear [ WiX,ar - (f WX, )2 3 0




for ail values of W resulting from the Schwarz inequality. It follows from Eq. (42) that instability of

the flow is expected when

Cab it

-8+ [ Xedr [ po @ =¥, lyl2rar < 0. (43)

3 ‘
L L It is obvious from the above equation that the axial velocity always destabilizes the flow except for con-

. stant W where 8, = 0. The second term in Eq. (43) represents the contribution from the Rayleigh-

Synge and the Alfven discriminants. Instability will occur when the generalized Michael condition is

pevrr,

violated. It is interesting to note that even though'both Egs. (38) and (43) involve similar arguments .
t . on the axial velocity and on the generalized Michael condition, they represent different bounds on flow

stability. It is obvious from Eq. (43) that violating the generalized Michael condition automatically

TR

leads to instability of the flow. However, such a conclusion can not be drawn directly from Eq. (38)

since violating the sufficiency condition does not necessary lead to instability.

B. Azimuthal modes (k = 0)

The sufficiency condition for k = 0 reduced from Eq. (29) reads

Y
W e

4 I > 1 (44)
1+ Q3(Q=-c)?” 4
, J, = rQ22Dpg — Dy 3) + (m? — 4)peN2 2 . (45)

po(rDQ)?

where

Cy ™ %-c,,,-}-ic,,,,
and is the angular phase velocity. An analogy can be drawn between the two sufficiency conditions in
Egs. (38) and (44) except in the latter the shear effect is produced by the angular velocity rather than
the axial velocity. Equation (44) suggests that the angular velocity plays a dual role in flow stability:
the angular velocity itself stabilizes the flow while its gradient destabilizes the flow. This characteristic
can further be observed in the following analysis. The influence of the azimuthal magnetic field on
flow stability is difficult to see because the sufficiency condition involves the complex phase velocity. {

An alternative way to examine the flow characteristics is given as follows.

10
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Equation (20) for k = 0 is written as

Dlpor*(N? — m*Q 3) D*y)
- 2mrDlpg(NQ = mQ D] + pom* (N}~ ® + 402+ ¥, — m*Q )}y = 0. (46)
Here

N=mQ - .
Multiplying Eq. (46) by r¢ and integrating the resultant equation yield

f (N - m*Q ) X, dr + f{2mrND(p09) - m?[rQ2(Dpy) + rDeQ ) )r lWlPdr=0 (47)

where
X, = 0o(r2|D*¢|2 + m?lglDr > 0. (48)
Further we utilize the transform
You=polPPIDY2+ (m* =D pllr >0 49
Eq. (47) can be reduced to a simple quadratic form of the complex azimuthal phase velocity ¢,
2 [ Xpdr = 2¢, [ QY par + [ (@2 - QDY dr =0, (50)
Solving (50) for c,, leads us to a conclusion that the flow will be unstable (corresponding to ¢; = 0)
when
<8, + [ (Dol lar [ QY dr + [ Xpar [ Q3Y,ar < 0 (51)
where

8n=f Yo [ Q2 ar - (f QY,a)? > 0

for all values of @ resulting from the Schwarz inequality. The first term of Eq. (51) represents the
shear effect produced by the angular velocity gradient. It is obvious that this term always destabilizes
the flow except for uniform rotation where 8, = 0. Instability in this case is of centrifugal origin
because of the absence of shear layers within the flow domain. The second term (51) represents the
density variation within the centrifugal force field produced by the rotation of fluid. Positive density
gradients stabilize the flow. In the absence of magnetic fields, instability automatically occurs when the
density decreases radially outwards regardless of the detailed profile of the angular velocity. Even
though it is also suggested by Eq. (44) that negative density gradients may lead to the violation of the

sufficient condition for stability, instability, however, can not be concluded. Violating Eq. (44) does

11
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not necessarily lead to instability. The last term in Eq. (51) represents thc magnetic influence on flow

stability. The presence of the azimuthal magnetic force, regardless of its detailed distribution, always

1 stabilizes the azimuthal disturbances. This argument, which cannot be seen clearly from criterion (44),

' wil' * : supported by an analytical solution to the governing stability equation. Another conclusion we

o

can draw from Eq. (51) is that for uniform rotation flow stability can be guaranteed if the density

increases radially outwards. This characteristic is also independent of the profile of the magnetic field

1
l
|
|
| ]
and cannot be observed from Eq. (44). ‘ }
‘,
C. Arbitrary modes :

|

i

Because of the complexity of the arbitrary perturbations, we will ignore the influence from the

, |
r magnetic field and concentrate on the coatribution from the density and velocities of the flow. Under
1 -
these conditions, the constraint in Eq. (32) is satisfied and, without losing the the stabilizing effect, the
t sufficient condition for stability reduced from Eq. (36) reads
1+s)e 1
> - (52)
(DW + s(rDQ +4Q)]1? ~ 4
A This condition was first derived by Fung & Kurzweg (1975) in their study on heterogeneous swirling
? flows. Readers are referred to their detailed discussions on the condition. Reminiscent of the statically
i i stable condition for density encountered in two-dimensional shear flows, the Rayleigh-Synge criterion
b }
22‘ (® > 0) acts as a condition for centrifugal stabilities.
‘ In the following, we will further investigate the stability characteristics by adopting the method
I used in the axisymmetric and the azimuthal cases. The integral equation thus obtained is 4
| Alyl? '
| v poD( & ) _4miQ? 2 )
o Svxar-2f man Bt ar - [ |0 - =P [ solelirae = 0 (s3) 4
: where
+ !}_
& X = pol———— 10912 + 613 + 3 0. (s4) "
‘; i m + k2R
y !
!
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We further utilize

po [PIDYI2 + (k2r + m? = Dly|2r
m? + k2P
Equation (53) is transformed to-a simple quadratic form of »

Y 2 0. (55)

o [ Xdr = 20 [ (WX + mQYV)dr + [ (CWX + 2WmQY + m*QY)ar
{ 2m*Q? K
~J po

2
m:+ k2t m? + kr? v l2rdr = 0. (56)
Instabilities are expected whenever

P+

w2
-8y —8qp—-8,—8,+ f (Dpy) T drf m*QYdr
ki 2
+fXdrfp00 ey lgl2rdr < 0. (57

Here
sw= [ Xar [ k2wXdr - (f kWXdr)?
8u = [ Yar [ ma¥Yar - (f mavar)?
8, = 2(f Xar [ kWmaYdr - [ kWXar [ mYar)

2 2 2k2
8 =2 fmzﬂszrf Tmz_:_r—:'z?)_zpolwlz’d' —fXdrf (%(—:—k%polwlzrﬂl.

Since X and Y are positivé definite, it follows from the Schwarz inequality that both 8, and 8 are
positive definite for all values of Wand 0, representing the shear effects conveyed by the gradients of
the axial and tangential velocities. As also implied by condition (52) they both destabilize the flow
except for constant axial and angular velocities where 8 = 8y = 0. The third and fourth terms are
respectively the influence of the perturbation directions on the shear effect produced by the velocities
and on the centrifugal force created by the fluid rotation. Both can be either positive or negative,
implying that they can either stabilize or destabilize the flow. This stabilization or destabilization will
not be seen until solutions to the governing stability equation are obtained. The fifth term in (57) is
the effect of density variations in the centrifugal force field. Positive density gradients stabilize the
flow. The last term in (57) invoives the Rayleigh-Synge discriminant and stabilizes the flow if the
Rayleigh-Synge criterion (® > 0) is satisfied. Condition (57) can reduce to condition (43) for the

axisymmetric case and to condition (51) for the azimuthal case if the magnetic flelds are deieted.
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(3) Bounds on Unstable Waves

For instability, a bound on the growth rate can readily be obtained from Eq. (28). Since the ﬁrst

three integrals in the equation are all positive definite, it follows, as an opposite to the sufficiency con-
dition for stability in Eq. (29), that the integrand in the last integral must be negative somewhere

within the flow domain. This leads to a bound on the growth rate such that

2 < N}(DW + srDQ)? (58)
<A+ D @V, =402 + ND — 407 = [DW + sGDO + 40)F |
The above bound will be meaningless for those proﬁles satisfying N, = 0. A bound for those cases can

also be obtained from Eq. (33) and the growth rate is then bounded by

[DW + s(rDQ +4Q)]2
2 - -
i< l ) @ \P,)] . (59)

In the following we will further investigate upper bounds for possible unstable waves and compare

them with the stability characteristics previously obtained. Three special cases will be discussed.

A. The axisymmetric case (m = 0)

For mathematical simplicity in this case, we further ignore the axial magnetic field, i.e., W, = 0.

The integral equation for the present case, reduced from Eq. (28), becomes

2 2
L po10%612 + K1 1D rdr + [ pok® [o -v,- 2% ] T%IIT rdr = 0 (60)
as the governing relation for possible instabilities. From Egs. (20), (25) and (60) we follow the pro-
cedures used by Kochar & Jain (1979) in their derivation of the semi-ellipse theorem in two-

dimensional stratified flows to obtain

4‘-’1: min l Wmu - 1)

2
me + Wminl {
{ o 2 -\7! :Uk’mm]z u 2

where J;, as given in Eq. (39) is restricted to be less than 1/4 if Eq. (61) is valid. The subscripts max

W in l’

and min represent the maximum and minimum of the quantities within the flow domain. The semi-

ellipse theorem for the axisymmetric case thus states that the unstable axial phase velocity must lie
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within a semi-ellipse in the complex phase velocity plane as described by Eq. (61). The semi-ellipse is
bounded by the upper and lower limits of the axial flow velocity and is exactly the same the one in
two-dimensional stratified flow except that the local Richardson number is defined as in Eq. (39)

instead.

B. The azimuthal case (k = 0)

By using the Boussinesq approximation, Acheson (1973) was able to demonstrate the westward
drift phenomenon in his study on hydromagnetic wavelike instabilities in a rapidly rotating stratified
fluid. In addition, a quadrant theorem reminiscent of the semi-circle theorem in two-dimensional
stratified flows was also derived for slow amplifying waves. Even though his criteria were obtained for
nonaxisymmetric modes under certain assumptions, any attempt to infer that the azimuthal modes carry
the same characteristics as the nonaxiymmetric ones is, at best, uncertain. In the present case, we will
investigate this uncertainty. The procedure to be used to construct the bound for instabilities is similar
to the one used by Fung (1982) in his study of nonaxisymmetric instability on rotating flows except

that the present case is complicated by the magnetic field.

From the derivation of the sufficiency condition for stability, the integral equation of unstable

waves for k£ = 0 reduced from Eq. (28) is written as

fpo(rle%lz + m?|o|?) rdr

pom*riQ} 1 mDQ(mQ - w,) 2
f —INE | ol [ -t INE ]|¢|} rdr
m 04

pom’ 1
+ -
f INE ["’ D T

Substituting Eq. (25) into (62) and applying the Schwarz inequality lead to the inequality

1+

" (D) |2rdr = 0. (62)

1 (04):“:( 2 2
S Xutr & =5 < [1+ =252 - 40U ) pa + 1| [ A(DQ)polw12rar. (63)
dcq Coui
Next we separate the real and imaginary parts of Eq. (50) for instability into

J Q1= 26,0 -0 Yodr + (2 = c2) [ Xpdr =0 (64)




y

Y dr - co [ Xpdr =o0. (65)
Let Q. be the upper bound and Q,,, be the lower bound of the angular velocity within the flow

field. Because

J@-0,) @ -0,,)Y,4 <0 (66)
incorporating Eqs. (64) and (65) into (66) yields

(62 + 6 = Qe+ Vin) e + Ve euin + (@ D3) [ Xpr
+ [ [90x @ in(Dpy) + Do DIl 2dr < 0. 67
Equation (67) implies that the complex angular phase velocity will no longer be bounded by a semi-

circle if QmexQminDpo + D(pof23) < 0. This characteristic will be demonstrated by an analytical solu-

tion to the stability equation to be given in the next section. To construct a bound for possible unstable

waves, we assume that

Qm,ﬂm-mDpo + D(poﬂi) ) 0 (68)
and combine Eq. (63) and (67) to obtain

rﬂ,mﬂ....,,Dpo + rD{(pe02 2)
o _ Sout Oua ]’ po(rDQ)? Jmin_| .
T
[ Y S
L 4 ———2——-| = (0D min- (69)

Thus the complex angular phase velocity for unstable waves will be bounded by a curve described in
Eq. (69). Another conclusion we can directly draw from Eq. (69) is that stabilities will occur if the

minimum absolute value of the angular Alfvén velocity exceeds half of the maximum angular velocity

difference, i.e.,

10, )a % (O pas = D) (10)
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One should keep in mind that both criteria, Eq. (69) and Eq. (70), are valid only with the restriction
given in Eq. (68). The bound described by Eq. (69) depends not only on the density but also on the
upper and lower bounds of the angular velocity and of the Alfvén waves. The bound in Eq. (69)
reduces to the semi-ellipse theorem derived by Fung (1982) shouid the azimuthal magnetic field be
deleted from the flow. The bound in Eq. (69) also indicates that the amplifying waves do not neces-
sarily propagate against the basic rotation. Accordingly, the westward drift that exists in the arbitrary

amplifying modes does not prevail in the azimuthal case.
C. Uniform rotation and constant angular Alfvén wave

A solution for azimuthal modes described by a semi-circle can be derived for all unstable waves of
the flow with uniform rotation and constant angular Alfvén velocity regardless of the particular form of

the density distribution. For O = Qg and Q , = Q 4o, Eq. (46) under the present assumption yields a

simple form
D(por’D*u) — [Ar(Dpg) + mpglu = 0 (T
where
A=A, +id,=1- n (72)
r ! (00 - C,,,)z - ﬂ}o
and
A, L ([(Qq = cp)? ~ 020~ 2] [(Qg = ) — Q20— 2]

T @, - )i - a2

+ 4Q, (ﬂo - C,,,,) C,,Z,J

200c,,,, 0}0
A - 2 gl - =22 ¢, +c2}.
i l(ﬂo— C,,,)z _ onlz [(-'mr 00[ n& Cmr T Ci

Equation (71) and the conditions that # vanishes at the inner and outer boundaries form a Sturm-
Louiville system having the following characteristics: (1) A is always real indicating A, = 0, and (2) A
and Dp, are of opposite signs. These characteristic can also be shown by applying the integral method

to Eq. (71) or directly obtained from Eq. (50) under the present assumptions. The first characteristic

states that the complex angular phase velocity for all unstable waves must lie on a semi-circle described

by
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and since

- Qé¢-aly
I(Qo - l.‘,,,,)z_" 0}o|z

. must hold for all unstable waves, the second characterisitic clearly demonstrates that instabilities are

Cmr
A=A, [l-n—o]?O (74)

R

, impossible when Dpy 2 0. As a matter of fact this conclusion can also be drawn directly from Eq. (51)

‘ even for arbitrary angular Alfvén velocity. Instabilities of this type are certainly of centrifugal origin
since no shear layers exist within the flow field. In the absence of the azimuthal magnetic force, the
present semi-circle for unstable waves reduces to the one obtained by Fung (1982) in his analysis on
nonaxisymmetric instability of vortex flows. Once again, the unstable waves do not propagate against

the basic rotation unless @ 3o > Q4.
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SOME EXACT SOLUTIONS

To demonsiraie the validity of the sufficiency condition for stability and of the bounds for
i unstable waves, we proceed to construct several flow profiles and obtain exact solutions to the govern-

ing stability equation. Three types of vortex flows will be considered.

PuBge g A -

(1) Uniform Rotation

v s

First consider a flow profile with the distribution as follows:

Q(r)=Q, Q(r)=0,
W)= W, W,(r) = W,,. @9
po(r) = pa(r/R)?

Here R, o and all the quantities with the subscript 2 are arbitrary constants. The perturbation velocity

in the radial direction obtained by solving Eq. (20) is "
i,
v e L 2mNa0s - N D) | kerly (ker)
, uy = Nyr A ] + N? - N}z + T,Cker) 1,(kgr) -
i o 2M(Ngnz - N‘zn‘z) kchJ(lcr)
| +58 [ 3 + _——NI vy + “X.(ar) K,(kgr) (76)
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with the corresponding perturbation pressure equal to

o _a
a2==i(N} = Ni)&%: || 7 * L4 (ker) + BK, (ker)] an
R
i where
2 | _o@-al) (M0 Nofla)
| velmg+ | < 2m(N, Q3 — Ny 09 |2
2 N} - Ni

Nz- sz+ mﬂz—w
No= kW +mQ g
and /,(kgr) and K, (kgr) are the modified Bessel functions of the first and second kind of order v. The

prime denotes the total derivative with respect to the arguments shown. We further consider the
present flow to be confined within two solid boundaries located at R, and R,. The secular relation

' obtained by applying the boundary conditions u#,(R,) = us(R;) = O is

‘ _ zm(Nzﬂz NAzﬂ,‘z) + xlgl.:(x;g) I (c.2)
i - N}, Lo |
i , (78)
i o + Zm(Nzﬂz - NAzﬂ,qz) Kzglv(l(zg) L(x g)
i Nf = N IGog) |+
t (N K,
g _ 2m 202 NAzﬂAz) + K\ 8. (R|8) K.,(iqg)
1 - 0
| 2m(NQ = N4 k8K, (x,8)
; o 245 A235 42 280, \KQ

: : <+ K, (k
* | l N - N} K, (x2g) 28
. where
1 ‘ Kj - kRJ j - l, 2.

It is difficult to observe the general behavior of Eq. (78) because both the argument and the order of
the modified Bessel functions involve the complex eigenfrequency. However, stability behaviors for

some special cases can still be observed and compared with the earlier obtained criteria. One such case

is the axisymmetric mode with zero axial magnetic field. The asymptotic expansion of the Bessel func-

tions for large axial wave numbers allows us to obtain the explicit solution
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| k™= % - W, + k§°'++a;:gsz t‘;‘l;z} (79)
f where : »
: a=0 %1, £2,.....
l Equation (79) shows the flow will be stable if and only if
r c+4)Q{-00330. (80)
This is exactly what the generalized Michael condition predicts in Eq. (40). The stability domain is :

plotted in Fig. 1. For axisymmetric modes, the presence of the azimuthal magnetic field stabilizes the

A

flow for negative density gradients and destabilizes the flow for positive density gradients.

Another special case is the one for azimuthal modes. The solution to Eq. (78) for k = 0 is found

to be

o 2 +n0 @ Z h) (@04 + hQ ) @D

where

o? 2
-m + |4 __
AT {m(n,/xz)l

and a is an arbitrary integer. Because (o0 + #) is always positive definite, the flow will be stable if

ca&+[m + e (R./Rz)] ]n,. >0. (82)

Unlike the stability behavior in the axisymmetric case the angular Alfvén velocity always stabilizes the

azimuthal disturbances. This conclusion is consistent with the stability characteristics predicted by Eq.

(51) for azimuthal modes. The stability boundaries described in Bq; (82) are plotted in Fig. 2. Due to

POUE DU

the presence of the azimuthal magnetic field, the flow can still be stable even when the density is
decreasing radially outwards. Another observable stability characteristic in the case of azimuthal modes
is that the solution for unstable waves in Eq. (81) lies on the semi-circie as prescribed by Eq. (73).

(2) Twe-Region Flow

. The second flow profile we would like to investigads it a twostegion flow with W iniuefide
between the inner and outer region located at r = R. The flow distributions are as follows:
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Fig. 1 = The stability domain for axisymmetric modes »
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ak)=Qq,
W(r)= W,
QN=Qy j=12
Wer) = W,
po(r) =p;
where all the quantities with index j are constants. After matching the interfacial conditions in Eqgs.

ey e

(23) and (24), the secular relation for stability is found to be:

gt (Nt = N})
PUImNQ, — NaQt) k&l (kgD
le - N}l I,(xg))

+ (ﬂlz- ﬂi[)

g} (N] - N})

a - +(@f-ai){=0 83
i P I m(N,Q, — Ng i) k8K, (k82 (03 1 3
? N} = N}, K (kg)) |
. where
‘ |
4(0/2— 0}]) Njﬂ,‘j— Nﬂlﬂ/ ?
. &= 1- NZ—NZ‘ -4 NZ_NZ
J Aj J Al

NAJ-kWA/"FmﬂAI j-l,2
and

e

« = kR.

! If the axial Alfvén velocities are negiected and the perturbations are constraufiea to be axisyrmetric,

o a5 ¥ il vt 4 S

L Lol

the asymptotic expansion of the modified Bessel functions for large axial wave numbers allows us to

solve Eq. (83) and the resultant condition for stability is )

P Pl—|+;lz- (0} - 03) = p(@F ~ Q3] - B(W, - W)? 3 0. (84)

This condition, composed of the centrifugal force jump and the axial velocity difference at the interface,

is consistent with Eq. (43) under the same assumption. The flow will be unstable if the centrifugal

o force at the interface is decreasing outwards. The axial velocity difference always destabilizes the flow 3

8 | except for W), = W,. In that case, the generalized Michael condition in (40) is recovered as

| 0203 = 03) -} =03 30 85)
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for stability. As a matter of fact, condition (85) can easily be obtained by integrating Eq. (40) across

the interface, since the flow is stable within the inner and the outer regions.

Another solution we would like to obtain from Eq. (83) is one for the azimuthal modes. For

k = 0, Eq. (83) yields a simple solution

_lm=1pi@) + (m + Dp@2; = Ve
m m(p; + p))

(86)
where
O =—(m = Dpps(0;— QP+ (py = py) [(m = Dp, Q2 + (m + Dp, Q4]

+mpy, +py) {(m - l)plﬂﬁl +(m+ l)pzﬂ}z]. (87
Stability of the flow will be guaranteed if

620 (88)
As in our previous discussion of Eq. (51) for azimuthal modes, the first term in Eq. (87) is the shear
influence generated by the difference in the angular velocities at the interface which always destabilizes
the flow. The second term represents the effect of the density variation in the centrifugal force field
created by the rotation of the fluids in the inner and outer regions. Stabilization effect requires the
density gradient at the interface to be positive. The last term in (87) is the effect of the azimuthal

magnetic field which always siabilize= the flow.

For instability, a semi-circle bound, if valid for the present profile, would read

2 2
Ic,,,, - ﬁ;&] +c2 < lﬂ_zz_g_n_] . (89)

Substituting Eq. (86) into Eq. (89), we find that the above inequality will be satisfied if

Pr=p)Q 03+ [(m+ l)Pzﬂ}z +(m- l)plﬂill 2 0. (90)
This satisfies the restriction in Eq. (68) for the validity of a semi-circle bound. Equation (90) also indi-
cates that unstable waves will no longer be bounded by a semi-circle if the inequality is violated.
Unlike the semi-circle bound on all unstable waves in two dimensional stratified flows, the semi-circle

theorem in vortex flows does not in general provide a bound on unstable waves if the restriction in Eq.

(68) is violated.
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(3) Three-Region Flow

As the last example to demonstrate the criteria previously derived for uniformly rotating flows
subject to azimuthal perturbations, we consider a three-region flow with constant angular velocity Q,

constant angular Alfvén velocity 1 ,o, and a density distribution specified by

P o< r<R
po(r)- pz[Trl'] R|< I<R2.
R2<r<°°
P3

Here p), p1, p3 and o are constants that characterize the density profile in the three flow regions with
their common interfaces at the radial positions R, and R,. The axial components of the velocity and
magnetic field in this case can be arbitrary. With the solutions for the velocity and pressure perturba-
tions given in Egs. (76) and (77), we obtain, after using the matching conditions in (23) and (24), the

secular relation for stability as

mm+%pz+(nz-m)x‘--pzv mp;-%p‘ﬁ (p3—pPA +p%v
- R¥ = - R¥ on
mpy + 5p2 + (p2 = p)A + pyv mp3— Sp3+ (o3 —pPA—pYv

where A is given in Eq. (72), vis given in Eq. (77), and p % = p3(Ry/R,)” is the density of the middle

region evaluated at r = R,. Two special cases for the present flow profile will be investigated.

The first special cases is for o = 0, i.e., the fluid is homogeneous in the middle region. Equation

(91) yields
A[l—ﬂe’-lll-ﬂ’-],\z—m(wm -8 m1+ 2 +al2+ 2l=0 92
4] P2 P Pt [ P2
where
R#™ — R}m
Awm A1
Ri™ + R}m

There are four general types of density profiles for the flow under consideration. They are: (a)
p3 > p2 > p1, (b) p3 < p2 < py, (©) p3 < p2 > py, and (d) p3 > p; < p;. Combining Eqs. (72) and

(92), we find that instabilities will occur when
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Qglyl + Q2oUxl £ Vo2 = TeD) < 0 for type (a)

¢yl — Q3Uxl £ VxE = [ED > 0 for type (b) (93)
and
Qdlyl + Q3o(xl = V2 + [€) > 0 for types (c) and (d)
where
1 p3
-ml + -1 -2
X = m A [ o
-2
(4] P2
and
g-4m’[l-£3“l-p—3] [ll+p—’ +[22 4+ 8
/M P2} lA P P P2

Since the sums of the terms inside the radicals in Eq. (93) are always positive;, we can immediately con-
clude from the conditions in Eq. (93) that the presence of the azimuthal magnetic field. as in our previ-
ous discussion of Eq. (51), always stabilizes the flow. It is obvious that the instability condition for
type (a) can never be satisfied, as also predicted by Eq. (51). since the density is increasing tadially out-
wards. In the absence of the azmuthal magnetic field. the conditions in Eq. (93) reduce to those in
Fung (1982) and the flow is always unstable except for the density profile in type (a). It can also be
shown that for instability, all the unstable waves for the density profile in types (b), (c¢) and (d) lie on

the semi-circle described by Eq. (73).

The second special case we would like to examine is a continuously varying density distribution.
Equation (91) for p, = p, and p3 = p;(R\/R;)” yields the simple form

2m? + oA ~ 2mv)RE* = 2m? + oA + 2mv)R{. (94)

Equation (94) has the same form as the one (Eq. 22) in Fung & Kurzweg (1975) except for the terms

involving A and v due to the presence of the magnetic field. A simple solution to Eq. (94) for v = 0

allows us to solve for the complex phase velocity as

_ Um+al+40)Q0 = Vdm + o' + 40) (4o Q1§ + 4m? + o¥) O ol
4m? + ol )

(95)
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Since the sum of the terms in the first bracket inside the radical is positive, we can again conclude the
azimuthal Aflvén velocity also stabilizes the flow. Furthermore, the complex phase velocity for

unstable waves in this case also lies on a semi-circle as predicted by Eq. (73).
CONCLUSIONS

Some general stability criteria for a general type of vortex flows of conducting fluids with axial
velocity components under the influence magnetic field are derived. Exact solutions to the governing
stability equation for some special flow profiles are obtained and compared with the earlier derived cri-

teria of a less general nature.

The derived sufficiency condition for stability is generally unseparable from the complex eigenfre-
quency because of the presence of the axial and the azimuthal magnetic field. To further investigate
the roles played by the density, velocity and magnetic field in flow stability, three types of perturbation
conditions are investigated and compared with the sufficiency condition. It was shown that densities
that increase radially outwards always have a stabilizing effect. Unlike the axial velocity which always
destabilizes the flow, the angular velocity plays a dual role in flow stability. While the gradient of the
velocity generates shear effects which destabilize the flow, the rotation of the velocity creates a centrifu-
gal force field which stabilizes or destabilizes the flow depending on the sign of the density gradient. If
perturbations to the flow are restricted to be azimuthal, the magnetic field, regardless of its detailed dis-

tribution, always stabilizes the flow.

Several bounds on unstable waves are also obtained and compared with some exact solutions to
the stability equation. For axisymmetric instabilities, a semi-ellipse theorem is proved to be valid in the
absence of the axial magnetic field. For azimuthal instabilities, an upper bound on the complex phase
velocity, reminiscent of the semi-ellipse theorem in the non-magnetic case, is derived with a restriction.
Such a restriction indicates, as supported by an exact solution to the stability equation, that not all
unstable waves are bounded by a semi-circle in the complex phase velocity plane. For flows with uni-

form rotations and constant Alfvén velocities subiect to azimuthal perturbations, instabilities can only
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occur when the density decreases radially outwards. Furthermore, the phase velocity for such instabili-
ties, regardless of the detailed density distribution, must lie on a semi-circle in the complex velocity
plane. The semi-ellipse and semi-circle bounds derived for the azimuthal modes clearly show that the
amplifying waves do not necessarily propagate against the basic rotation. As a conclusion, therefore,
; the westward drift derived for arbitrary nonaxisymmetric modes does not generally prevail in the

azimuthal case.
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